PV Grid-connected Inverter EA1KLPV/EA1K5LPV/EA2KLPV

User's Manual

Contents

1.	Manual Instruction	
	1.1 Symbols used in this manual 1	I
	1.2 User group	2
	1.3 Validity	2
2.	Safety Instructions	
	2.1 Intended use	2
	2.2 Safety instructions	3
3.	Unpacking	
	3.1 Scope of delivery	1
	3.2 Identifying the Inverter	1
4.	Mounting the Device	
	4.1 Security	5
	4.2 Selecting the mounting location	5
	4.3 Mounting instructions	7
5.	Electrical Connection	
	5.1 Connection Area Overview)
	5.2 System Diagram 10)
	5.3 Cable Sizing 11	I
	5.4 Connection of the PV generator (DC)	2
	5.5 Connecting the inverter to the grid	3
	5.6 Connecting communication cable	3
6.	Switch on and off	
	6.1 Switch on	7
	6.2 Switch off	7
7.	Operation	
	7.1 Display Overview	3
	7.2 LED display	3
	7.3 LCD display)
8.	Troubleshooting	
	8.1 Display Message	3
9.	Technical data)
10). Appendix	
	10.1 Exclusion of liability	

1. Manual Instruction

1.1 Symbols used in this manual

This manual contains important instructions for safety and operation which must be understood and carefully followed during installation and maintenance of the equipment. In order to reduce the risk of electric shock and to be sure that the equipment is correctly installed and ready to operate, special safety symbols are used in the manual to highlight potential safety risks or useful information. The symbols are the following:

\wedge	DANGER!
14	DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.
	WARNING!
	WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.
	CAUTION!
	CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
	NOTICE
•	NOTICE indicates a situation which, if not avoided, could result in property damage.
	Information
	Information provides tips that are valuable for the optimal installation and operation of your product.

1.2 User group

This manual is for electrically skilled persons. The tasks described in this manual may only be performed by electrically skilled persons.

1.3 Validity

This manual applies to EA1KLPV/EA1K5LPV/EA2KLPV grid-connected inverter and describes the mounting, installation, commissioning, maintenance and troubleshooting procedures.

Keep this manual in a convenient place for future reference.

2. Safety Instructions

2.1 Intended use

EA1KLPV/EA1K5LPV/EA2KLPV is a PV inverter, which converts the direct current of the PV array to grid-compliant alternating current and feeds it into the power distribution grid. PV grid-connected system consists of PV modules, grid-connected inverters, metering device and power distribution system (Figure 1).

Figure 1 PV grid-connected system

The EA1KLPV/EA1K5LPV/EA2KLPV series inverter is suitable for indoor and outdoor use and may only be operated with PV arrays (PV modules and cabling) of protection class II... Do not connect any sources of energy other than PV modules to the inverter. Any other use can result in personal injury or property damage.

2.2 Safety instructions

DANGER!

Danger to life due to high voltages in the inverter!

High voltages that can result in electrical shocks are present in the conductive component parts of the inverter.

All work on the inverter may be carried out by qualified personnel only.

DANGER!

Danger of burn injuries due to hot enclosure parts.

Do not touch enclosure during operation.

Only touch the lid during operation.

DANGER!

Before opening the housing, the inverter must be disconnected from the grid and PV generator; while you must wait at least 5 minutes to let the energy storage capacitors fully discharged after disconnecting from the power sources.

WARNING!

The installation must be performed in full compliance with national and local standards and regulations.

3. Unpacking

3.1 Scope of delivery

Check the delivery for completeness and for any visible external damage. Contact your dealer if anything is damaged or missing.

Object	Description	Quantity
A	EAST EA1KLPV/EA1K5LPV/EA2KLPV inverter	1
В	DC plug connectors (1 x positive/1 x negative)	1 pair
С	AC plug assembly	1
D	Wall plug	4
E	Mounting screws	4
F	Mating connector for RS485 terminal block	2
G	User manual	1

3.2 Identifying the Inverter

You can identify the inverter by the type label. The type label is on the right side of the enclosure. The serial number (Serial No.) and the type (Type / Model) of the product, as well as device-specific characteristics are specified on the type label.

4. Mounting the Device

4.1 Security

	DANGER! Danger to life due to fire or explosion!
^	Despite careful construction, electrical devices can
	cause fires.
17	• Do not mount the inverter on flammable construction materials.
	Do not install the inverter in areas where highly
	flammable materials are stored.
	Do not install inverters in areas with a risk of explosion.

CAUTION!

Risk of injury due to the heavy weight of the inverter.

- Take the weight of the inverter into account for transport.
- · Select a suitable mounting location and mounting surface.

CAUTION!

Danger of burn injuries due to hot enclosure parts!

Mount the inverter in such a way that it cannot be touched inadvertently.

4.2 Selecting the mounting location

Consider the following requirements when selecting the mounting location:

- The mounting method and location must be suitable for the inverter's weight and dimensions (see section 11 "Technical Data" (page 80)).
- Mount on a solid surface.
- > The mounting location must at all times be clear and safely accessible.
- > Mount vertically or tilted backwards by max. 15°.

- > The connection area must point downward.
- Never mount the device with a forward tilt...
- > Never install the device with a sideways tilt.
- Do not mount horizontally...
- > Mount at eye level to allow operating states to be read at all times.
- > The ambient temperature should be below 40°C to ensure optimum operation.
- Do not expose the inverter to direct sunlight as this can cause excessive heating and thus power reduction.
- In living areas, do not mount the unit on plasterboard walls or similar to avoid audible vibrations. When in use, the inverter emits noises which may be perceived as a nuisance in a living area.
- Observe the following minimum clearances to walls, other devices or objects to guarantee sufficient heat dissipation and enough space for pulling the

Direction	Minimum clearance
Sides	300 mm
Above	300 mm
Below	500 mm
Front	50 mm

Electronic Solar Switch handle.

4.3 Mounting instructions

Mounting procedures:

a) Drilling holes:

There are holes on the mounting template in the accessory, which is for help of orientation. Drill four holes for the screws at the selected installation position. The space between every two holes is shown in the figure below. Keep drilling vertical to the wall and don't shake the drill to avoid holes tilting. The depth of the holes must be the same and 55mm \sim 60mm. After removing the dust in the four holes, measure the net depth of the holes. If the depth is deeper than 60 mm or less than 55 mm, the wall plugs wouldn't be installed and tightened.

b) Wiring the screws

After drilling holes in the wall, place four wall plugs (object2 shown in the left drawing below) in the holes using a rubber hammer. Then, wiring four screws (object1) into the wall plugs.

c) Attach the inverter to the screws downwards slightly.

5. Electrical Connection

5.1 Connection Area Overview

The following figure shows the assignment of the individual connection areas on the bottom of the inverter.

Object	Description		
А	DC input: Plug-in connectors for connecting the PV strings		
В	Communication connection area: PV inverters are configured via RS485 interface.		
С	AC output: Socket for grid connection		

5.2 System Diagram

The typical connection diagram for the entire PV system is shown in the following figure.

Object	Item	Description		
		Used as a protective device during electrical connection. User		
	DC airauit	must equips this device according to the maximum input		
А		voltage and current. You must choose the external DC circuit		
	Dreaker	breaker whose rated current is 20A and the max breaking		
		capacity can reach more than 1kA.		
		Provide DC power to the inverter. The allowable maximum		
P	PV arrays	open-circuit voltage of the PV arrays is 550V and maximum		
В		short-circuit currents 13.5A for EA1KLPV/14.5A for		
		EA1K5LPV / 15.5A for EA2KLPV.		

С	Remote PC	User equips this device to monitor the state of the inverter.	
D	AC circuit breaker	Used as a protective device during electrical connection. You must choose the external AC circuit breaker whose rated current is 20A and the max breaking capacity can reach more than 2kA. The PE cable should be connected reliably to the earth.	
Е	Grid	Rated voltage of the utility grid is 230V.	

5.3 Cable Sizing

All cables for PV power system are equipped with water-proof direct plug-in connectors. You'll find these connectors in the package

For electrical connection in the PV system described above, the cross section of all cables used should not be smaller than the following requirements.

Terminal Wire Size	AC Output			DC Input	
AWG Model	L	N	PE	+	-
EA1KLPV	14	14	14	12	12
EA1K5LPV	13	13	13	12	12
EA2KLPV	12	12	12	11	11

There is only one channel of DC input which can connect one PV string. The red is "+", and the black is "-". There is one channel of AC output, the red is L phase, the black is N phase, and the yellow-green is PE.

NOTICE

The grid impedance of the AC cable must not exceed 1 Ohm. Otherwise, the inverter will disconnect at full feed capacity due to excessive voltage at the feed-in point.

5.4 Connection of the PV generator (DC)

5.4.1 DC input wiring

5.4.2 DC connection Procedure

- Step 1: Assemble DC cable to connector at the inverter side. See "5.4.1 DC Input Wiring".
- Step 2: Disconnect DC and AC circuit breakers.

- Step 3: Check connection cable of one PV array string for correct polarity and that the maximum input open circuit voltage does not exceed 450V.
- Step 4: Measure DC voltage between positive terminal of the PV string and Earth and DC voltage between negative terminal of the PV string and Earth. If the two voltages are constant and not zero, there is an insulation failure somewhere in this PV string.
- Step 5: Plug DC positive and negative connector into corresponding terminals. If it makes a click sound, it means DC connector has attached to terminals.

5.5 Connecting the inverter to the grid

5.5.1 AC output wiring

Step 1: Unscrew AC output cover at the downside of the machine.

Step 2: Insert stripped AC cables of appropriate size into the cable glands. Fix the phase cables into corresponding terminals with screwdriver according to marks. Fix ground cable into the ground terminal.

Step 3: Screw the AC output cover.

Step 4: Tighten the cable gland in clockwise direction.

5.5.2 AC connection Procedure

Step 1: Assembling AC cables to connector supplied. See "5.5.1 AC Output Wring".

- Step 2: Make sure that AC and DC circuit breaker are disconnected.
- Step 3: Connect L, N to AC circuit breaker.
 - Plug AC connector to corresponding AC terminals.
 - Screw AC cables to AC circuit breaker.
- Step 4: Connect PE to the ground.
- Step 5: Connect AC circuit breaker to utility grid.

Step 6: Make sure that all AC cables are firmly installed.

NOTICE

Assignment of AC cables should be paid attention to, especially "PE/GND" wire.

5.6 Connecting communication cable

5.6.1 Assembling the RS485 plug connector

Step 1: Make the communication cable through the waterproof ring, and then connect the cables to the terminal.

1	Blank	
2	В	0 0 0
3	А	S. 5
4	GND	

2. Fasten the waterproof ring and case.

3. Finally, match the finished terminal to the RS485 communication port on the inverter's case, then it is ready for communication.

5.6.2 Monitor system connection

The inverter provides RS485 interface to communicate with remote PC. User can monitor the state of the inverter and observe current running information and history record via this interface. Below is the method to install the monitoring system.

6. Switch on and off

6.1 Switch on

1. Finish the installation of the PV array, AC grid and the inverter according to the introduction before.

2. Before switch on, checking whether AC voltage and DC voltage can meet the requirement of the inverter

3. Switch on the DC breaker at first.

4. Then switch on the AC breaker.

5. When the environment conditions allow the inverter to work, the inverter will automatically start up and connect the grid to generate power.

6. After the inverter works normally on grid, it can be left working itself without human control. It can shut down when fault occurs and it can start automatically after the fault is gone.

6.2 Switch off

1. When solar power was not enough to generate the power, the inverter will shut down automatically.

2. If you need to shut down the inverter yourself, you can operate the inverter through the front panel screen.

3. The process of emergency shutdown.

If you need shut down the inverter in emergency, first turn off the AC breaker, then turn

off the DC breaker, otherwise it may lead to the damage of the DC breaker and danger to people. If any damage or loss occurs due to not following this requirement, we will not follow the warranty.

7. Operation

7.1 Display Overview

Object	Descriptions	
А	GREEN LED (Working normally)	
В	RED LED (Fault)	
С	2 line LCD display	

7.2 LED display

The PV inverter is equipped with two LEDS including "green" and "red" which indicate three different modes of operation.

Green LED: Normal mode

The green LED lighting indicates that the inverter is active and working normally.

Whenever the supplied power from PV panel is sufficient (voltage>120VDC), Inverter converts power to the grid. If the power is insufficient (voltage<90VDC), the inverter enters a "waiting" state.

Red LED: Fault mode

The red LED indicates that the inverter has stopped feeding power into the grid because of fault, and the corresponding fault information will display on the LCD at the same time. **All off:** Shutdown mode

During periods of little or no sunlight, Inverter automatically stops running. In this mode, Inverter does not take any power from the PV panels. The display and LED's on the front panel do not work.

7.3 LCD display

The LCD display consists of 16 characters and 2 lines. Once the PV power is sufficient, the inverter starts up automatically. The inverter displays information as shown in the flow chart as follow:

"Welcome" \rightarrow "Model:EAxKLPV" \rightarrow "Version :x.xx" \rightarrow "Waiting: xxS" \rightarrow "Normal State" \rightarrow "Pac= xxx.x W".

To save power, the LCD display's backlight automatically turns off after feeding the grid 5 minutes. If there is a fault message appears, the LCD display's backlight turns on all the time until the fault is solved.

Along with different working states of the inverter, the LCD display different information as follows:

The first line of LCD					
System State	LCD Display Content	Remark			
System Initial	Welcome	System initial default display			
Standby	Waiting	waiting			
Connecting	Connecting **s	System checking			
Connecting	Reconnecting **s	Again System checking			
On Crid	Working	Inverter working			
On Grid	Pac= xxxx W	Inverter watt at working			
Key stop	Shutdown	Key off			
Waiting key start	Waiting Start	Waiting key start			
	PV Over Voltage	Dc over voltage			
Fault	Island	Island or no grid			
	AC Over Voltage	Ac over voltage			

AC Under Voltage	Ac under voltage
AC Over Freq	Ac over frequency
AC Under Freq	Ac under frequency
High Temperature	Temperature abnormal
AD Channel Fault	Adc channel abnormal
High lac Leakage	Ac leakage current over
Over Current	abnormal current
Insulation Fault	PV insulation fault
No Utility	No grid
High DC Component	Dc component over
Relay Check Fail	Relay check fail
Fault	fault clc

The second line of LCD				
System	Cycle Display	Display	Dem ente	
State	Content	Time /s	Remark	
System			Machine model, grid standards,	
Initial	EAXK TUV X.XX		software version	
Standby	Null	2	Display null	
	Company : XXXX	2	Manufacturer	
	Model: EAxKLPV	2	Inverter model	
	Version:x.xx	2	software version	
Connecting PV BU	PV:xxx.xV xx.xxA	2	PV voltage and current	
	BUS:xxx.xV	2	Bus voltage	
	AC:xxx.xV xx.xxA	2	Grid voltage and current	
	Freq:xx.xxHz	2	Grid frequency	
	Etoday:xx.xxKWh	4	Energy today	
	PV:xxx.xV xx.xxA	4	PV voltage and current	
On Grid	BUS:xxx.xV	4	Bus voltage	
	AC:xxx.xV xx.xxA	4	Grid voltage and current	
	Freq:xx.xxHz	4	Grid frequency	
Key stop	Null		Upper pc key stop, display until key start	

Waiting key	Null	Upper pc key start, display until
start	Null	entering standby
Fault	Info:xxx.xV xx	Dc over voltage fault value and fault code
	Info:xxx.xV xx	Ac over voltage fault value and fault code
	Info:xxx.xV xx	Ac under voltage fault value and fault code
	Info:xx.xxHz xx	Ac over frequency fault value and fault code
	Info:xx.xxHz xx	Ac under frequency fault value and fault code
	Info:xxx.xV xx	Relay check fail fault value and fault code
	Info:xxxx xx	Temperature abnormal value and fault code
	Waiting xxxs xx	Other fault display countdown and fault code

Fault Messages	Fault Code	Fault Descriptions	LCD displays
	1	The slave DSP detects the grid fault, and communicates with the master DSP through the parallel port.	1.Island 2.NULL
	2	System start checks grid fault	1.Island 2.NULL
Island 3 4 5	Phase lock program detects zero signal for three continuous grid cycle	1.Island 2.NULL	
	Active islanding program detects the grid fault	1.Island 2.NULL	
	5	Grid voltage is under 20V	1.Island 2.NULL

	6	Grid voltage is over 300V	1.AC over voltage 2.voltage value,fault code
Grid Over voltage	7	Grid voltage is over the preset over voltage protection point	1.AC over voltage 2.voltage value,fault code
	8	While feeding grid, system detects grid transient voltage over bus voltage -15V.	1.AC over voltage 2.voltage value,fault code
Grid under	9	Grid voltage is under the preset under voltage protection point	1.AC under oltage 2.voltage value, fault code
voltage	10	Grid voltage is under 110V and over 20V,	1.AC under voltage 2.voltage value, fault code
Grid over frequency	11	Grid frequency is over the preset over frequency protection point	1.AC Over Freq 2.Freque value, fault code
Grid under frequency	12	Grid frequency is under the preset under frequency protection point	1.AC under Freq 2.Freque value, fault code
Bus over	13	Bus transient voltage is over the preset bus voltage protection point	1.Bus over voltage 2.Bus voltage value, fault code
voltage	14	Bus voltage is over the preset bus voltage protection point	1.Bus over voltage 2.Bus voltage value, fault code
PV isolation resistance check	15	PV isolation resistance check fails	1.Isolation Fault 2.NULL
Output DC Injection check	16	While feeding grid, system detects the dc current component injecting to the grid.	1.High DC omponent 2.NULL
Temperature check	17	Inverter inner ambient temperature is too high	1.High temperature 2.Temperature value, fault code
Leakage current check	18	Ac leakage current is over the preset protection value	1.High lac Leakage 2.NULL

19	19	Relay check phase 1 fails, when the first group relays are closed while the second group relays are opened	1.Relay Check Fail 2.fault value and fault code
		Relay check phase 2 fails, when	1.Relay Check Fail
	20	the first group relays and the	2.fault value and fault
Relay check 21	second group relays are closed	code	
	Relay check phase 3 fails, when the first group relays are opened while the second group relays are closed	1.Relay Check Fail 2.fault value and fault code	
		Relay check phase 4 fails, when	1.Relay Check Fail
	22	the first group and the second	2.fault value and fault
		group relays are opened	code

8. Troubleshooting

8.1 Display Message

It is important to understand all operational and error messages that could appear on the LCD display. The error messages that appear are especially important because service personnel will need this information reported in order to help them to define the failure and correct it.

a. Working Status Messages

Operation Condition	Messages	Descriptions
		1.Initial condition: Before system startup
Power Off	No Display	voltage (80V)
		2.PV Inverter is totally shutdown, Vpv < 70V

		1.Initial condition: After PV voltage is higher
		than 120V, inverter is waiting for feeding
Initialization and Waiting	Waiting	to grid
		2.After Startup: Input voltage range is at 80
		~ 120V

Check Orid	Connecting	When PV voltage > 150V, inverter is
Check Ghu	xxxS	checking feeding conditions
Feeding Grid	Working	Inverter is feeding power to the grid

b. Monitoring Parameter Messages

Operation Condition	Messages	Descriptions	
Instantaneous Output	Pac=	The real time output power in your vM	
Power	xxxx.xW		
Accumulated energy	Energy=	Total energy has been fed to the grid ince	
information	xxxxxkWh	inverter was installed	
Today's energy	Etoday=	Total Energy that has been fed to the grid	
information	xxx.xkWh	today.	
Crid Valtage and Current	AC:xxx.xV	Grid Voltage in xxx.x VAC, feeding urrent	
Ghu voltage and Current	xx.xxA	in xx.xxA	
Crid Frequency	Freq:		
Gild Flequency	xx.xxHz		
PV Array Voltage and	PV:xxx.xV	Input voltage and surrent from DV erroy	
Current	xx.xxA	input voltage and current nom PV array,	

c. System information Messages

Operation Condition	Messages	Descriptions
Model Display	EAxKLPV	Inverter Model
Software version	VX.XX	Software version
Waiting for reconnect to	Reconnect	The weiting time for recompact to the grid
the grid	in xxx S	The waiting time for reconnect to the grid

d. System Fault Messages

Operation Condition	Messages	Descriptions and corrective measure
Isolation Failure	Isolation Fault	The resistance between the PV + or PV – and grounding is outside the permissible range, <500K.

		Corrective measures		
		Check the insulation of the PV plant		
		♦Check the PV plant for ground faults		
		and have the PV generator installation		
		engineer to fix the ground fault before		
		reconnect the string in question		
		The grid voltage is not within the		
		permissible range. This fault can be		
		caused by any of the following conditions:		
		Power distribution grid disconnected		
		(miniature circuit-breaker, fuse)		
		♦The local grid condition is out of		
		acceptable range.		
		The inverter disconnects itself from the		
		public grid for safety reasons.		
		Corrective measures		
	AC Over	◆Check the grid voltage and connection		
Grid Voltage Fault	AC Under	on the inverter.		
		◆I If the detected grid voltage is within		
	vollage	permissible range, restart the PV Inverter		
		and try again. If fault remains, contact the		
		system installer to check the grid voltage		
		and cable connections between PV		
		Inverter and Utility system.		
		♦ If detected grid voltage is out of		
		permissible range, contact the system		
		installer to check the feed-in AC voltage		
		and contact the utility operator for further		
		action.		
	AC Over	The grid frequency is out of the		
Grid Frequency Fault	Freq	permissible range.		

	AC Under	Corrective measures		
	Freq	Check the grid connection and contact		
		the distribution grid operator if necessary.		
		\blacklozenge If the power frequency is within the		
		tolerable range, but disturbances are still		
		displayed, contact the EAST Service line.		
		Utility is not available. This can occur if the		
		AC fuse is broken, No AC connections		
		from utility system, or broken AC cables.		
		Corrective measures		
No Utility	Island	◆Check the Utility system and the AC		
		connections of the PV Inverter		
		♦ Check the AC fuses of the PV Inverter		
		◆ If failure remains, disconnect the PV		
		Inverter and contact the system installer.		
	PV Over voltage	Input voltage higher than 450V. The		
		inverter could be damaged.		
		Corrective measures		
Input Voltage		Disconnected PV modules immediately.		
too High		◆Check the configuration of the strings		
		for the PV modules in order to ensure the		
		maximum input voltage is lower than		
		450V.		
		Leakage current on ground conductor is		
		too high		
		Corrective measures		
	High lac	\blacklozenge Check the AC Cables Connections,		
Leakage current Fault	Leakage	especially the grounding cables. Ensure		
		all the cables are connected properly.		
		♦ Restart the PV Inverter.		
		◆ If fault remains, disconnect the PV		
		Inverter and contact the system installer.		

e. Inverter Fault Messages

Operation Condition	Messages	Descriptions		
Consistent Fault	Consistent Fault	The readings of 2 microprocessors are not Consistent. It could be caused by CPU and/or other circuit not functioning properly.		
		Corrective measures Restart the PV Inverter. If fault remains, disconnect the PV Inverter and contact the EAST Service line		
Temperature too high	High Temperature	The internal temperature is higher than normally allowed value		
		Corrective measures Disconnect PV Inverter for a period (>30 minutes) and then restart the PV Inverter. If fault remains, disconnect the PV Inverter and contact the system installer. Select a new location for the installation when if it is necessary. 		
Output Relay Failure	Relay check fail	The relay between the inverter and grid is not functional		
		Corrective measures Restart the PV Inverter. If fault remains, disconnect the PV Inverter and contact the EAST Service line. 		

Output DC Injection too high	High DC Component	Output DC injection too high	
		Corrective measures	
		\bullet Check the connection of the DC input.	
		♦Restart the PV Inverter.	
		\blacklozenge If fault remains, disconnect the PV	
		Inverter and contact the EAST Service line.	

	EEPROM failure	EEPROM inside has data access problem		
EEPROM Problem		Corrective measures		
		 If fault remains, disconnect the PV 		
		Inverter and contact the EAST Service line.		
Communication failure between microprocessors	SCI failure	Communication between MCU inside is abnormal		
		Corrective measures		
		♦Restart the PV Inverter.		
		• If fault remains, disconnect the PV		
		Inverter and contact the EAST Service line.		
DC bus voltage is too high	Bus Over voltage	The DC BUS inside is higher than expected		
		Corrective measures		
		♦ Check the DC voltage, if the DC voltage		
		is above the maximum input voltage,		
		contact the system installer.		
		♦If the DC voltage is under the maximum		
		input voltage, restart the PV Inverter.		
		\blacklozenge If fault remains, disconnect the PV		
		Inverter and contact the EAST Service line.		

9. Technical data

	Specification/Type	EA1KLPV	EA1K5LPV	EA2KLPV
	Max. DC Power	1200W	1800W	2300W
	Max. DC voltage	450V	550V	550V
	MPP voltage range	90V-405V	125V-450V	150V-450V
	DC nominal voltage	360	360	400
Input(DC)	start voltage	150V		
	Shutdown Voltage	Typical 80V		
	Max. input current	13.5A	14.5A	15.5A
	Number of MPP-Trackers	1	1	1
	Number of strings	1	1	1
	DC switch	optional		
	Rated AC power	1000W	1500W	2000W
	Max. AC power	1100W	1650W	2200W
	Nominal AC voltage	230Vac		
	Grid voltage range	180 V 265 V		
	Grid frequency range	44 Hz 55 Hz		
	Nominal AC current	4.4A	6.5A	8.7A
Output(AC)	Max. AC current	5.6A	8.3A	11A
Output(AO)	Power factor	1		
	Harmonic distortion (THD)	<3%		
	at rated output			
	Number of grid phases	1		
	Night consumption	OW		
	Power consumption at	< 6141		
	standby			
Efficiency	Max efficiency	96%	97%	97%
LINGENCY	Euro efficiency	94%	95%	96%

	MPPT adaptation efficiency	99.5%	99.5%	99.5%	
	DC reverse-polarity protection	Yes			
	DC Insulation monitoring	Yes			
Protection	AC short circuit protection	Yes			
devices	Grid monitoring	Yes			
	Ground fault monitoring	Yes			
	DC current monitoring	Yes			
	Islanding protection	Active Frequency Disturbance			
	Dimensions(W×H×D)	330mm×425mm×142mm			
	Net Weight	13.5kg			
	Operating temperature range	–25 °C to +60 °C(up 45°C derating)			
	Relative humidity	0% to 100%, non-condensing			
	Site altitude	Up to 2000m without derating above sea level			
Canaral	IP protection type	IP65			
General	Topology	transformerless			
uala	Cooling concept	Convection			
	Noise emission	<40db(A)			
	LED display	3			
	LCD display	Backlight, 16x2 Character LCD			
	Data logger	RS485			
	Data communication				
	interfaces				
	Warranty	5 years			

10. Appendix

10.1 Exclusion of liability

The content of these documents is periodically checked and revised, when necessary, please call us for the latest information. However discrepancies cannot be excluded. No guarantee is made for the completeness of these documents. Please contact our company or distributors to get the latest version.

Guarantee or liability claims for damages of any kind are excluded if they are caused by one or more of the following:

- Improper or inappropriate use or install of the product
- Installing or operating the product in an unintended environment
- Installing or operating the product when ignoring relevant safety regulations in the deployment location
- Ignoring safety warnings and instructions contained in all documents relevant to the product
- Installing or operating the product under incorrect safety or protection conditions
- Altering the product or supplied software without authority
- The product malfunctions due to operating attached or neighboring devices beyond allowed limit values.
- In case of unforeseen calamity or force majeure.